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‭OpenEEmeter 4.0 Final Model Specification and Testing‬
‭Results‬
‭This document contains three sections:‬

‭1.‬ ‭A technical summary of improvements from OpenEEmeter 3.0 to 4.0‬

‭2.‬ ‭Results of testing the OpenEEmeter 4.0‬

‭3.‬ ‭A detailed OpenEEmeter 4.0 model specification‬

‭I.‬ ‭OpenEEmeter 4.0 Daily Model Summary and Specification‬

‭Technical Summary of the 4.0 Model and Improvements‬

‭While the OpenEEmeter 3.0 model has provided an important start for the open source,‬

‭meter-based measurement of gas and electric savings from demand side energy programs,‬

‭it has long been known that further development could improve model performance in key‬

‭areas. In particular, the 3.0 model exhibits systematic seasonal bias, in particular for‬

‭populations of gas meters, as well as weekend/weekday bias, observed frequently among‬

‭populations of commercial electric meters. The OpenEEmeter 3.0 Daily model also carries‬

‭high computational cost; it can take up to 1 minute on average to fit a meter. This expense‬

‭can be burdensome for users, especially for large datasets.‬

‭The OpenEEmeter 4.0 Daily model has improved these core performance elements.‬

‭Starting with computational cost, the 4.0 model makes improvements on two main fronts.‬

‭First, the determination of balance points was modified from an exhaustive grid search to a‬

‭global optimization scheme. Second, instead of explicitly fitting multiple models for the‬

‭various possible combinations of heating, cooling, and temperature-independent load,‬

‭inspiration was taken from Lasso regression and model coefficients are penalized. This‬

‭enables use of only a single model fitting in which the lasso regression will favor model‬

‭simplicity (as opposed to generating all possible candidate model formulations). This idea of‬

‭a cost-benefit analysis is a common theme in OpenEEmeter 4.0; the cost of additional model‬

‭complexity is justified by its benefit. Computational time improvements are as high as 100x‬

‭(60 seconds to 0.5 seconds) in legacy mode (matching OpenEEmeter 3.0 within ~5% on an‬

‭individual meter level). If OpenEEmeter 3.0-like results are desired, this performance increase‬
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‭can be fully realized. However, this speed is leveraged in OpenEEmeter 4.0 to fit a‬

‭better-performing model.‬

‭In OpenEEmeter 4.0 seasonal bias has been reduced by 84% and weekday/weekend bias by‬

‭95% through a combination of selective splitting into segments based upon season and‬

‭weekday/weekend designations as well as updating the model formula to a smoothed‬

‭3-segment, piecewise linear model. When we detect that the building is behaving‬

‭fundamentally differently, we enable splitting of time periods and selection of unique‬

‭sub-models. These additional complexities are only allowed if their benefit overcomes a‬

‭penalization barrier. To ensure improvements are predictive and the penalization parameters‬

‭are reasonable, this model was tested extensively using a 10-fold, shuffle split cross‬

‭validation scheme on ~6,000 meters. Of the 6,000 meters, 4,000 were residential gas,‬

‭1,000 electric residential, and 1,000 electric commercial meters. This distribution was chosen‬

‭because seasonal bias was prominent in residential gas, but improvement here was not to be‬

‭made at the expense of electric performance. Additional out-of-sample spot checks have‬

‭shown that the changes to OpenEEmeter are robust and globally relevant meaning that‬

‭OpenEEmeter 4.0 meets not only its stated goals but is an overall predictive improvement‬

‭over OpenEEmeter 3.0.‬
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‭II.‬ ‭Results of Final Model Testing‬

‭Bias Summary Table:‬‭Comparison between OpenEEmeter‬‭3.0 Daily and OpenEEmeter 4.0‬
‭Daily of fractional biases during the noted timeframes for each sample studied:‬

‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0 in “3.0 Mode”:‬‭Distribution of differences in‬
‭baseline model among individual data points (Res Gas sample):‬
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‭Residential Gas‬

‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Distributions‬‭of baseline model seasonal bias:‬
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‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Distributions‬‭of baseline model weekend bias:‬
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‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Population-level‬‭seasonal error profiles in the‬
‭baseline model as a function of the difference between the average daily temperature and‬
‭the heating balance point temperature:‬
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‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Population-level‬‭thermal lag error profiles in the‬
‭baseline model as a function of the difference between the average daily temperature and‬
‭the previous day’s temperature:‬
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‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Individual meter‬‭model examples:‬
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‭Residential Electric‬

‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Distributions‬‭of baseline model weekend bias:‬
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‭Commercial Electric‬

‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Distributions‬‭of baseline model weekend bias:‬
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‭OpenEEmeter 3.0 vs. OpenEEmeter 4.0:‬‭Individual meter‬‭model examples:‬
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‭OpenEEmeter 4.0 in “3.0 Mode” on Billing Data:‬
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‭III.‬ ‭Model Specifications‬

‭1.‬ ‭Model Options:‬

‭1.1.‬ ‭Date times are broken into 3 segments: summer, shoulder, and winter days.‬

‭1.1.1.‬ ‭Defaults that have been tested in the United States are summer =‬
‭(June, July, August, September), shoulder = (March, April, May,‬
‭October), winter = (January, February, November, December).‬

‭1.2.‬ ‭Date times should be defined to be either a weekday or weekend.‬

‭1.2.1.‬ ‭Note: This nomenclature will be retained throughout this document,‬
‭but in the model formulation weekdays are not required to refer to‬
‭Monday - Friday nor weekends to be Saturday and Sunday.‬

‭1.2.2.‬ ‭Defaults that have been tested are weekdays = (Monday - Friday),‬
‭weekends = (Saturday, Sunday)‬

‭1.3.‬ ‭An uncertainty significance level should be assigned. The standard is α = 0.1.‬

‭2.‬ ‭Data‬

‭2.1.‬ ‭The following data is required:‬

‭2.1.1.‬ ‭Date time‬

‭2.1.2.‬ ‭Temperature‬

‭2.1.3.‬ ‭Observed meter reading‬

‭2.2.‬ ‭Date times should be assigned as a summer (su), shoulder (sh), or winter (wi)‬
‭day based on prior model options.‬

‭2.3.‬ ‭Date times should be assigned as weekday (wd) or weekend (we) based on‬
‭prior model options.‬

‭2.4.‬ ‭Temperature determination should conform with existing OpenEEmeter 3.0‬
‭requirements.‬

‭3.‬ ‭Elimination of Allowed Splits‬

‭Each combination of season and weekday/weekend can potentially be assigned an‬
‭independent mode (a “split”). The purpose of the split elimination step is to shrink the‬
‭number of these possible splits so that the overall number of permutations can be‬
‭reduced, thus limiting computation time.‬

‭3.1.‬ ‭Each segment (wd-su, we-su, …, we-wi) are fit with confidence ellipses based‬
‭on their observed values and temperatures. For a given confidence ellipse, the‬
‭major axis is multiplied by 1.4 and the minor axis by 0.89. These values were‬
‭determined by testing.‬
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‭3.1.1.‬ ‭These confidence ellipses can be further refined by removing outliers‬
‭using a 2-D median filter and/or other methods.‬

‭3.1.1.1.‬ ‭In OpenEEmeter 4.0, a median filter with a size of 5 is used in‬
‭conjunction with a filter to remove values outside 3 standard‬
‭deviations of the confidence ellipse‬

‭3.1.2.‬ ‭The confidence ellipses are compared against each other.‬

‭3.1.2.1.‬ ‭If, for a given season, both the weekday and weekend data‬
‭overlaps with another season then the first season is not‬
‭allowed to be an independent split‬

‭3.1.2.2.‬ ‭If, within any season, the weekday data overlaps with the‬
‭weekend data, then a weekday/weekend split is not allowed‬

‭4.‬ ‭Model Fitting‬

‭The “model” (or “full model”) refers to the combination of submodels selected to‬
‭predict energy consumption for the full year. Sub-models refer to the individual‬
‭models of a split, whether that be we-su, wd-su, or any combination of‬
‭wd/we-su-sh-wi. Submodels that do not have a weekday/weekend split are instead‬
‭referred to as full week (fw) submodels.‬

‭4.1.‬ ‭All possible permutations of weekday/weekend and seasonal splits are‬
‭determined based on the prior allowed splits and internal model configuration‬
‭settings. A full model must represent a full year of seasons and days and‬
‭follows OpenEEmeter 3.0 data sufficiency requirements.‬

‭4.2.‬ ‭The permutations or potential model splits have components in common that‬
‭can be fit independently and combined to form the full model. All unique‬
‭components are identified and receive a preliminarily fit. The actual fitting‬
‭procedure can be found in section 5.‬

‭4.2.1.‬ ‭For example, A full model consisting of [fw-su + we-sh +‬‭wd-sh‬‭+‬
‭fw-si] shares common submodels (underlined) with another full model‬
‭consisting of [wd-su_wi+‬‭wd-sh‬‭+ we-su_sh_wi].‬

‭4.3.‬ ‭All potential full models are compared using a modified‬‭Bayesian Information‬
‭Criterion‬‭(BIC) selection criterion given as Eq. 1.‬‭The full model with the lowest‬
‭selection criterion is the model selected for the final fitting step.‬

‭(1)‬

‭where x is the loss value from optimization divided by the loss value of the‬
‭unsplit model, both of which are functions of the residuals, K is the number of‬
‭splits + 1, and N is the number of datapoints in the model. The formulation and‬
‭coefficients were determined through testing.‬
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‭4.4.‬ ‭Once the best potential model has been identified, its submodels are refined‬
‭and refit according to section 5.‬

‭5.‬ ‭Preliminary Submodel Fitting‬

‭The purpose of the initial submodel fitting is not to get the best model possible, but‬
‭instead to get an inexpensive estimate that serves to narrow down the potential‬
‭model splits to a final selection that will then be further refined. In this step,‬
‭submodels are all smoothed piecewise linear functions, with possible smoothing, that‬
‭follow the following rules.‬

‭5.1.‬ ‭Heating slopes are constrained to always be zero or negative.‬

‭5.2.‬ ‭The temperature independent region is an intercept-only function.‬

‭5.3.‬ ‭Cooling slopes are constrained to always be zero or positive.‬

‭5.4.‬ ‭Smoothing is performed using an exponentially decaying function, Eq. 2, for‬
‭the heating model and Eq. 3 for the cooling model.‬

‭(2)‬

‭(3)‬

‭where‬‭β‬‭is the slope coefficient,‬‭k‬‭is the smoothing‬‭parameter,‬‭T‬‭bp‬ ‭is the‬
‭balance point temperature, and‬‭C‬‭is the intercept.‬

‭5.5.‬ ‭When optimizing the coefficients, k is derived from a 0 - 100% maximum‬
‭smoothing factor (‬‭k‬‭%‬‭), and‬‭T‬‭bp‬ ‭is also shifted such‬‭that the slope remains in the‬
‭same temperature location. This pushes the‬‭T‬‭bp‬ ‭to‬‭the right when smoothing is‬
‭being applied in the heating model and left in the cooling model. These are‬
‭defined in Eqs. 4 - 6.‬

‭(4)‬

‭(5)‬

‭(6)‬

‭where HDD refers to the heating model and CDD the cooling model.‬

‭5.5.1.‬ ‭If the sum of‬‭k‬‭%‬ ‭is greater than 100%, they are divided‬‭by their sum to‬
‭enforce that the summation is at maximum 100%.‬

‭5.6.‬ ‭The initial guesses for the coefficients are determined by using the DIRECT‬
‭global optimization algorithm. The algorithm changes only the balance points‬
‭and the rest of the model is set using a 3 segment, non-smoothed piecewise‬
‭linear function as described previously. The algorithm seeks to minimize the‬
‭sum of squared error (SSE).‬
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‭5.7.‬ ‭The initial guesses are used as inputs into the Subplex local optimization‬
‭algorithm to minimize a Lasso regression-inspired objective function. The‬
‭objective function is a function of the residuals from the model function and‬
‭the observed values as well as the coefficient values.‬

‭5.7.1.‬ ‭Each coefficient in the model has its own penalty factor that is‬
‭combined by taking the sum of the absolute values of these penalty‬
‭factors multiplied by 0.001.‬

‭5.7.2.‬ ‭The heating and cooling balance points are penalized by taking the‬
‭minimum distance between them and the minimum and maximum‬
‭observed temperature, respectively. An additional penalty is added to‬
‭each of them that is half the distance between the two balance points.‬

‭5.7.2.1.‬ ‭The balance point penalties serve to push the balance points‬
‭towards each other and to the temperature extremes.‬

‭5.7.3.‬ ‭The slopes are penalized by first scaling them by the standard deviation‬
‭of the temperature divided by the standard deviation of observed‬
‭meter values from within the region being modeled. They are multiplied‬
‭by an additional penalty (1E30) if the number of data points is less than‬
‭minimum required.‬

‭5.7.3.1.‬ ‭The slope penalties push the slopes towards zero, heavily in the‬
‭case of not meeting the minimum number of data points‬
‭requirement.‬

‭5.7.4.‬ ‭The smoothing parameters, computed as 0 - 100%, are normalized in‬
‭the same manner as 5.5.1 and then multiplied by their associated slopes‬
‭divided by 2.‬

‭5.7.4.1.‬ ‭The effect of the smoothing parameters is to push them‬
‭towards zero, but more heavily if slopes they are smoothing are‬
‭larger.‬

‭6.‬ ‭Final Submodel Fitting‬

‭The final model uses the inputs from the preliminary models to minimize the weighted‬
‭SSE (wSSE) between the observed values and the model. This utilizes the adaptive‬
‭loss function and does not use the Lasso regression-inspired penalty.‬

‭6.1.‬ ‭Bounds are set so the balance points cannot create distinct modeling regions‬
‭that contain less than the minimum number of designated points.‬

‭6.2.‬ ‭The adaptive loss is a continuous function of a shape parameter,‬‭α‬‭, and‬
‭median-standardized residuals.‬

‭6.2.1.‬ ‭The shape parameter can make the function replicate a SSE (‬‭α‬‭= 2),‬
‭smoothed L1 (‬‭α‬‭= 1), Cauchy (‬‭α‬‭= 0), or Welsh loss‬‭(‬‭α‬‭= ∞) depending‬
‭on its value. It is determined each time the function is called through a‬
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‭single variable optimization and is penalized to prefer SSE, it will choose‬
‭more outlier resilient values if appropriate.‬

‭6.2.2.‬ ‭The median standardized residuals are unique for each section of the‬
‭function (heating, temperature-independent, and cooling). The raw‬
‭residuals undergo a simple outlier rejection scheme using the standard‬
‭1.5 Inner Quartile Range (IQR) rule. Their medians are then subtracted‬
‭from and they undergo another 1.5 IQR rule to estimate the locations of‬
‭outliers among the shifted residuals. The shifted residuals are divided‬
‭by this value to get the median-standardized residuals.‬

‭6.2.3.‬ ‭The adaptive loss function is converted to weights based on the‬
‭optimum‬‭α‬‭.‬

‭6.3.‬ ‭Each squared residual is multiplied by its weight and then summed to obtain‬
‭the net wSSE.‬

‭7.‬ ‭Use with Monthly Data‬

‭When monthly consumption data are the subject of the calculation, there are not‬
‭enough data points to support model splitting as described above.‬

‭7.1.‬ ‭With monthly data, OpenEEmeter 4.0 should be used in legacy mode.‬

‭32‬


